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Abstract 

The objective of this work is to identify the critical 

nodes in the system for effective monitoring of the 

power system voltage stability. In this work, 

Participation Factors calculated from the eigen values 

and eigen vectors of the power flow jacobian is utilized 

to determine the critical nodes of the given power 

system. The results obtained from the studies have been 

compared with the results obtained using L-index and 

Q-V curves. In this work, an attempt to identify the 

cluster of nodes affected due to various contingencies 

is also considered. To show the effective ness of the 

proposed technique, studies have been carried on IEEE 

5-bus and IEEE 14-bus systems.  

Keywords: Eigen vectors, L-index, Participation 

Factors 

1. Introduction 

Voltage stability problem is significant since it affects 

the power system security and reliability. Voltage 

stability [1] is related to the “ability of a power system to 

maintain acceptable voltages at all buses under normal 

conditions and after being subjected to a disturbance”. 

Voltage instability is an aperiodic, dynamic 

phenomenon. As most of the loads are voltage 

dependent and during disturbances, voltages decrease at 

a load bus will cause a decrease in the power 

consumption.  

A definition of power system stability as given in [1] 

is Power system stability is the ability of an electric 

power system, for a given initial operating condition, 

to regain a state of operating equilibrium after being 

subjected to a physical disturbance, with most system 

variables bounded so that practically the entire 

system remains intact.  

For analysis purposes, voltage stability can be 

classified, in two ways: according to the time frame 

of their evolution (long-term or short-term voltage 

stability) or to the disturbance (large disturbance or 

small disturbance voltage stability).  

 

Using Modal analysis [10] proposed by Gao, Morrison 

and Kundur in 1992, the reactive power margin and 

voltage instability contributing factors are calculated. 

Modal analysis depends on power flow Jacobian matrix. 

Real power is kept constant and reduced Jacobian matrix 

JR of the system is calculated.  

 

The matrix JR represents the linearized relationship 

between the incremental changes in bus voltage (∆V) 

and the bus reactive power injection (∆Q). If the 

minimum Eigen value of JR is greater than zero, the 

system is voltage stable. Using the left and right 

eigenvectors corresponding to critical mode, bus 

participation factors can be calculated. Branch 

participation factors are calculated from linearized 

reactive power loss. Buses and Branches with large 

participation factors are identified as critical buses. From 

the above methods we are using modal analysis and 

voltage stability index.  

 

2. Critical node Identification 

Minimum singular value or minimum eigenvalue 

helps to find the critical operating point. Modal 

analysis in which system is represented by using 

eigenvectors is also used. At the voltage collapse 

point, solution of power flow equations experiences 

convergence problem. So to avoid this convergence  
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problem, voltage stability indices are proposed based 

on power flow equations. These indices gives 

information such as critical buses 

 

2.1 Participation factor 

The power-flow (load-flow) analysis involves the 

calculation of power flows and voltages of a 

transmission network for specified terminal or bus 

conditions. The system is assumed to be balanced. 

Associated with each bus are four quantities: active 

power P, reactive power, voltage magnitude, and voltage 

angle.  The relationships between network bus voltages 

and currents can be represented by node equations [6]. 

                                                

The Newton-Raphson method is an iterative technique 

for solving nonlinear equations. Using this method, the 

model can be linearized around a given point the 

following way: 

 (2.1) 

 (2.2) 

 

Where J is called the Jacobian matrix,  is the 

incremental change in bus real power,  is the 

incremental change in bus reactive power injection,  

is the bus voltage angle and  is the incremental 

change in bus voltage magnitude. 

 

2.1.1 Procedure for Participation Factor 

The modal analysis mainly depends on the power- flow 

Jacobian matrix. The stepwise procedure for the modal 

analysis method used in this study is given below. 

Step 1): Obtain the Load flow for the base case of the 

system and get the Jacobian matrix (J). 

Step 2): Compute the reduced Jacobian matrix (J)  

Step 3): Compute the Eigen values of  RJ A  

Step 4): Investigate Eigen values for voltage stability  

        a) if i 0  ,the system will collapse  

             b) if i 0  ,the system is voltage stable, 

proceed to step 5  

        c) if i 0  , the system is voltage unstable  

Step 5): Find minimum Eigen value of  R minJ   

Step 6): Calculate the right and left Eigen vectors of 

 RJ ,   

Step 7): Compute the Participation factors kiP  for 

 min  is ki ik*   

Step 8): The highest kiP  will indicate the most 

participated 
thk bus to 

thi  mode in the system 

Step 9) Generate the Q-V curve to the participated 
thk  

bus.  

 

The Newton Raphson Power Flow equations can be 

written in the form: 

 (2.1) 

 

By letting P 0  in equation (2.3) 

1 2P 0 J θ J V     (2.3) 

1

1 2θ J J V    (2.4) 

3 4Q J θ J V     (2.5) 

 

Substituting 2.6 in 2.7 

1

4 3 1 2Q J J J J V     (2.6) 

 RQ J V    (2.7) 

Where 

 1

R 4 3 1 2J J J J J
   

 (2.8) 

 is the reduced Jacobian matrix of the system. 

Equation 3.9 can be written as 
1

RV J Q   (2.9) 

 

The matrix RJ  represents the linearized relationship 

between the incremental changes in bus voltage V  and 

bus reactive power injection Q for constant active 

power. The Eigen values and Eigen vectors of the 

reduced order Jacobian matrix  are used for the voltage 
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stability characteristics analysis. Voltage instability can 

be detected by identifying modes of the Eigen values of 

matrix RJ . The magnitude of the Eigen values provides a 

relative measure of proximity to instability. The 

Eigenvectors on the other hand present information 

related to the mechanism of loss of voltage stability. 

 

Proceeding as per [12] the 
thi modal voltage variation is: 

min min

i

1
V Q

λ  
   (2.10) 

The implications of (3.12) can be stated as follows: 

1. If i 0   the 
thi  modal voltage will collapse 

because any change in that modal reactive power 

will cause infinite modal voltage variation. 

2. If i 0   the 
thi modal voltage and

thi reactive 

power variation are along the same direction, 

Indicating that the system is voltage stable. 

3. If i 0  the 
thi  modal voltage and the 

thi reactive power variation are along the 

opposite directions, indicating that the system is 

voltage unstable. 

 

The system is considered voltage unstable if at least one 

of the Eigen values is negative. A zero Eigen value of 

RJ means that the system is on the verge of voltage 

instability. Furthermore, small Eigen values 

of RJ determine the proximity of the system to being 

voltage unstable.  

 

2.2 Procedure For L-indeX 

Using Kirchoff’s Law, n-bus power system can be 

expressed as 

LL LG

GL

L L L

G G GGG

Z F
H

K

I

VY

V I

I V

       
        

         (2.11) 

Where,  

,  are the voltage and current vectors at the load 

buses  

,  are the voltage and current vectors at the 

generator buses  

    are the sub-matrices of the hybrid 

matrix H.  

 

The H matrix [14] can be evaluated using a partial 

inversion of the Y bus matrix, where the voltages at the 

load buses are exchanged against their currents. For any 

consumer node j,  an equation for Vi can be 

derived from the matrix 

L G

j ji i ji i

i i

V Z .I F .V
 

  
    (2.12) 

Which can be converted to 
*

j2 *

j 0 j j

jj

S
V V V

Y




 

   (3.28) 

with the substitutions for the equivalent voltage ,the 

transformed admittance  and the transformed power 

. Assuming that these effects can be estimated and 

controlled a local indicator Li can be worked out for 

each node j analogous to the line model 

0 j j

j * 2

j jj j

V S
L 1 ....

V V .V




   

      (2.13) 

For stable situations the condition  must not be 

violated for any of the nodes j. Hence a global indicator 

L describing the stability of the complete subsystem is 

given by 

 
L

j
j

L MAX L



      (2.14) 

One way of determining L is 

G

L

ji i

i

j
j

F .V

L MAX 1
V




 



 (2.15) 

Whereby  is set of consumer nodes and  is the set 

of generator nodes 

 

Thus the important outcome of the presented theory is 

for stability to be guaranteed 

L 1           (2.16) 
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2.3 Interpretation: 

The indicator L is a quantitative measure for the 

estimation of the distance of the actual state of the 

system to the stability limit. The local indicators Lj 

permit the determination of those nodes from which a 

collapse may originate. 

 

It can be shown that the derived theory is exact when 

two conditions are fulfilled i.e. that the stability limit is 

reached for L=l. The first requires that all generator 

voltages remain unchanged, amplitude- and phase wise. 

 The second calls for nodal currents which respond 

directly proportional to the current Ii and indirectly 

proportional to the voltage   at the node J under 

consideration. In general these two conditions are 

satisfied in an approximate manner only. 

 
Fig.3.1: Stability indicator L and its relation to the 

critical voltage Vcrt 

 

In this figure the indicator L for the 30-node AEP test 

system as well as the voltage at the critical node as a 

function of a load factor  are plotted. This load factor is a 

multiplier by which the powers Sj of all consumer nodes 

and the active power Pi at the generator nodes are 

increased keeping the voltages Vi of the generator nodes 

constant. It is seen that the indicator L exceeds the 

theoretical value of 1.0 for the limiting load factor 

Fmax=32.5 MVAR. The effect of this error with respect 

to F is very small since the rate of change dL/dF is quite 

high. This numerical result proves quite well that the 

various assumptions are valid and justified. The 

accuracy of the load level where the system becomes 

unstable is very good, in particular when the level at 

which the prediction is made is very high. 

3. Case study for IEEE 5-bus system 

The IEEE 5-bus standard system is considered for the 

analysis and it consists two generators  

L-index values 

Table 3.1 

 
By considering constant power load model, the L-

Index values are calculated for all load buses in table 

3.1. from this table the max value of L is taken as the 

first weak bus and next values are taken as second and 

third weak buses. From the table 5,4and 3 are the first 

three weak buses 

 

Participation factor values 

Table 3.2 

 
By considering constant power load model, the 

participation factor values are calculated for all load 

buses in table 3.2. From this table the max value is 

taken as the first weak bus and next values are taken 

as second and third weak buses. From the table 5,4 

and 3 are the first three weak buses. 

 

Comparison of Participation factor and L-index 

 
Figure 3.1 plot for participation factor and L-index Vs 

load buses 
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From the above  figure it is clear that 5
th
 bus is the 

weakest in all load buses, by comparing two methods the 

result is 5,4 and 3 are first three weak buses   

 

4. Case study for IEEE 14-bus standard system 

The IEEE 14-bus standard system is considered for 

the analysis and it consists two generators and three 

synchronous condensers 

 

4.1 L-index values 

Table 4.1 

 
By considering constant power load model, the L-

Index values are calculated for all load buses in table 

4.1. from this table the max value of L is taken as the 

first weak bus and next values are taken as second and 

third weak buses. From the table 14,10 and 9 are the 

first three weak buses 

 

4.2 Bus Participation factors 

Table 4.2 

 

By considering constant power load model, the 

participation factor values are calculated for all load 

buses in table 2.2. From this table the max value is 

taken as the first weak bus and next values are taken 

as second and third weak buses. From the table 14,10 

and 9 are the first three weak buses. 

 

4.3 Comparison of Participation factor and L-index 

 
Figure 4.1: Participation factor and L-index Vs load bus 

numbers 

 

From the above  figure it is clear that 14
th
 bus is the 

weakest in all load buses, by comparing two methods the 

result is 14,10 and 9 are first three weak buses  

 

5. Conclusion 

In this work critical nodes are identified for Case studies 

IEEE 5-bus system and IEEE 14-bus system for base 

case and for line outage. 

 

Modal analysis is used and the maximum loadability is 

identified at the smallest minimum Eigen value of the 

reducued system Jacobian matrix JR. This method gives 

bus participation factors that are used to identify the 

critical nodes. These critical nodes are compared with 

the L-index. 
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