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ABSTRACT: 

The present paper deals with a approximating method  

for large time – delays of multi-input multi-output 

(MIMO) dynamical systems. Time delay terms of the 

state space equations are described by delay matrix in 

the complex domain. A mixed model reduction method 

of matrix Pade-type-Routh model for the multivariable 

linear systems was presented. Matrix Pade-type Routh 

model approximation can largely reduce the instability 

and the overshoot, so the fast response property is 

improved. Simulation results of the proposed method 

are presented to illustrate the correctness and 

effectively. 

 

Keywords: multi-input multi-output Systems; Time-

Delays; matrix Pade-type model reduction, Routh table. 

 

INTRODUCTION 

A time delay in input-output relations is a common 

property of many industrial processes control [1], [2], 

such as thermo technical processes, chemical processes 

etc. The effects of time delay are essential. Take a freeze 

dryer for example, the temperature control system is a 

first order large inertia system produce dynamic 

temperature fluctuations, which lead the freeze dried 

products cannot fulfil the high quality demand. The 

time-delay property should not be neglected, that when 

unknown greatly complicates the control problem. In the 

analysis of a high degree multivariable system, it is often 

necessary to compute a lower degree model so that it 

may be used for a analogue or digital simulation of the 

system. The denominator polynomial of the reduced 

model is obtained from the Routh table and its 

numerator matrix polynomial is obtained by the matrix 

Pade-type Routh Model [6],[7].However, majorities of 

these ways engage in the analysis of single time-delay 

variable. Pade-type Routh model is popular method to 

approximate a scalar pure delay exponential function 

.se  In this paper, the multi-input multi-output 

multivariable matrix Pade-type approximation, the basic 

concept is defined and applied to the state-space 

approximation problem of multivariable linear systems.  

 

This paper has five sections, section II  states matrix 

Pade-type-Routh model reduction method. Section III 

explains the state equation of MIMO delay system. 

Section IV presents two simulation examples with 

different large time delay based on the proposed method, 

the step responses are plotted. Section V gives the 

conclusion.   

 

MATRIX PADE-TYPE-ROUTH MODEL 

REDUCTION METHOD 

Let the transfer function of a higher order system be 

represented by [6], [7] 
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Where Di, i=0,1,…, k-1 are constant l x r matrices, and 

ei, i=0,1,…, k are scalar constants. G (s) can be 

expanded into a power series of the from 
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Where the Ci, i=0,1,…., are l x r constant matrices which 

satisfy the relation 
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Thus using Eq. (3) the matrix transfer function may be 

expanded into a power series. 

Assume that the reduced model R (s) of order n is 

required, and let it be of the form 
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here the Ai, i=0,1,…, n  -1 are constant l x r matrices, 

and bi, i=0,1,…., n are scalar constants.  

 

Algorithm 1 

Step 1 The denominator En (s) of reduced model transfer 

function can be constructed from the Routh Stability 

array of the denominator of the system transfer function 

as follows.  

The Routh stability array is formed by the following 
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The Routh table for the denominator of the system 

transfer function is given as 
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En (s) may be easily constructed from the (k+1-n)-th and 

(k+2-n)-th and (k+2-n)-th rows of the above to give 
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Step 2 The numerator Dn (s) of reduced model transfer 

function by (5) and (6) can be obtained from  
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Thus the reduced model transfer function is given by 
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STATE EQUATION OF MIMO DELAY SYSTEM 

Consider a MIMO continuous-time system with delays 

 
Where 

areRCRBRAandRyRuRx mxnmxmnxnmn  ,,,,, 1 the 

situation of input and output vectors, respectively. 

Laplace transform of Eq. (11) and Eq. (12) respectively, 

then the transform function matrix of the MIMO system 

with delays can be obtained 

 
Where G1(s), G2(s), are without and with time delay 

parts of MIMO system G(s),  (s) is pure delays 

diagonal matrix which is given by 

 
Thus the time delay is represented in transfer function 

form as : 
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SIMULATION EXAMPLE 

Consider MIMO continuous-time system with delays  

 
Input time delays are ,800,100,32 321 sss  

respectively.  

Y(s) = C (sI-A)
-1

 B )()( sUs  
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Where G1 (s) is linear MIMO System 

           G2 (s) is Purely time delay 

)()(2 ssG   

Dut to pure delays component G2(s) is a diagonal matrix 

similarity transformation approach is used to obtain the 

decoupled state space equation, such that each output is 

corresponding to one input. Fig.1, Fig.2 and Fig.3 gives 

step response . 
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By applying pade – type Routh model the order reduced 

system transfer function is obtained as follows : 

Reduced order denominator (by applying Routh table): 

s
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Reduced order numerator (by applying pade –type 

method): 
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Thus the reduced order transfer function is 

885.127

283.0235.21

85.5886.1262.109

85.6898.128851.96
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By the addition of time delay to the original linear 

transfer function is  
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Reduced order denominator (by applying Routh Table): 
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Reduced order numerator (by applying Pade-type 

method) : 
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Thus the reduced order transfer function with time delay 

is  
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The simulation results for the original and reduced order 

systems can be seen from Fig.1, Fig.2 and Fig.3. These 

are the step responses with time delay for the original 

transfer function. 
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Fig.1: Step response of first output with time delay. 

 
Fig.2:.Step response of second output with time delay. 

 
Fig3. Step response of third output with time delay. 

 

And we can observe the step responses for original and 

reduced order system without time delay in Fig.4, Fig.5 

and Fig.6. 

 
Fig4.Step response of first output without time delay 

 
Fig5. Step response of second output without time delay 

 
Fig6.Step response of third output without time delay 
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IV. CONCLUSION 

In this paper, we observed step response of both original 

and reduced orders systems with and without time delay.  

A multivariable matrix Pade – type Routh Model for 

approximating the mulitinput- multioutput (MIMO) 

large time delays control system is presented. The 

proposed method is based on the right – coprime matrix 

Pade –Routh model, decoupling the MIMO state space 

equation, and estimating the minimum variance error to 

ensure the stability respectively. The method is simple 

and can be applied to practical control engineering.  
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