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ABSTRACT 

In this paper the methodology for  stabilizing PI 

controllers for third order systems are obtained using 

Boundary locus and Kronecker summation method.  

For stabilizing PID controllers for higher order 

systems are obtained using  -Hurwitz stability 

criterion method. Stabilizing PI controllers in the 

 ,p ik k  plane and PID in the  , ,p i dk k k controllers in 

the  guarantees the stability of a feedback system The 

Kronecker summation method needs the explicit 

equation in terms of controller parameters that 

defining the stability boundary in parameter space. The 

explicit expression needs the characteristic equation. 

Using this explicit expression, auxiliary characteristic 

equation is formulated using Kronecker summation 

operation. This auxiliary characteristic equation 

defines the stability boundary. The stabilizing region 

obtained using this method is compared with boundary 

locus method. The  -Hurwitz stability criterion 

method presented to its require sweeping over the 

parameters are required to find stabilizing set of PID 

controller. The third and higher order systems are 

considered to show the effectiveness of these methods 

and are simulated using Matlab. 

Keywords— Boundary locus method, Kronecker 

Summation method,  -Hurwitz stability criterion PI 

controllers, PID Controllers, Stability regions. 

1. INTRODUCTION 

There have been great amount of research work on the 

tuning of PI controllers. In this paper, three  approaches  

are  given for the computation of stabilizing PI 

controllers in the parameter ( , )p ik k  plane and PID 

Controllers in the  , ,p i dk k k plane. The result is used to 

obtain the stability boundary locus over a possible 

smaller range of frequency. Thus a very fast way of 

calculating the stabilizing values of PI controllers for a 

SISO (single input single output) control system is 

given. The calculation of robustly stabilizing controllers 

can be done using the stability boundary locus [1] or 

alternatively with Kronecker summation method [3]. 

These are array of techniques for the computation of 

stabilizing PI controllers. In Kronecker summation 

method the stability region is found by using Kronecker 

summation of two matrices. The novel approach makes 

use of the extraordinary feature of the Kronecker 

summation operation and explicit equation is obtained as 

the function of PI controllers which lie on the boundary 

of stability region must satisfy.  

 

The set of controllers of a given structure that stabilizes 

the closed loop is of fundamental importance since every 

design must belong to the set and any performance 

specifications that are imposed must be achieved over 

this set. So, this setis known as Stability Set denoted by  

S
0
:(δ(S, pK iK dK )).The three dimensional set S

o
 is 

simply described but not necessarily simple to calculate.  
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This is new method for the calculation of all stabilizing 

PI controllers is given. The Basically we use Routh-

Hurwitz criterion which will be very difficult due to 

formation of inequalities. Therefore to simplify the 

process we use a revolutionary method known as 

Signature Method. proposed method is based on plotting 

the stability boundary locus in the (kp, Ki)-plane and 

then computing the stabilizing values of the parameters 

of a PI, PID controller. The technique presented to 

require sweeping over the parameters and also it’s need 

linear programming to solve a set of inequalities. Thus it 

offers several important advantages over existing results 

obtained in this direction. Beyond stabilization, the 

method is used to shift all poles to a shifted half plane 

that guarantees a specified settling time of response. It is 

shown via an example that the stabilizing region in the 

(kp, ki)-plane is always a convex set. The limiting values 

of a PID controller which stabilize a given system are 

obtained in the convex set of(kp, ki)-plane, and (ki, 

kd)plane and 3-D view of stabilizing sets of (kp, ki, kd) 

observed in the simulation results and. 

 

Once the stabilizing region is obtained, the stability of 

the third order systems are verified in simulation using 

an arbitrary point. This paper is organized as follows: - 

The proposed methods are described in section 2,3 and 

4. Examples shown are described in section 5. 

Conclusion is given in section 6. 

 

2.  BOUNDARY LOCUS METHOD. 

Computation of Stability regions for PI Controllers: 

Assume the classical and very well known feedback 

control system shown in fig.1, where ( )C s  and ( )G s  

represent controller and plant respectively. The block 

diagram of this system is shown in fig.1 and ( )G s  is 

defined using equation 1 and ( )C s  is a PI controller 

defined by using equation 2.  

G(s)C(s)+
-

C(s)R(s)

 
Fig.1 A SISO control system. 

Consider a single input, single output (SISO) control 

system of Fig.1 where  

( )
( )

( )

N s
G s

D s
         (1) 

is the plant to be controlled and C(s) is a PI controller 

defined using equation (2). 

( )
p ii

p

k s kk
C s k

s s


  

  
      (2) 

The problem is to compute the parameters of the PI 

controller of Eq.(2) that stabilize the system of 

Fig.1.Decomposing the numerator and denominator of 

polynomials of Eq.(1) into their even and odd parts and 

substituting s j ,gives 

2 2

0

2 2

0

( ) ( )
( )

( ) ( )

e

e

N j N
G j

D j D

  


  

  


  
                              (3) 

 

The closed loop characteristic equation of the system can 

be defined using (4). 

1+G(s)C(s) =0      (4) 

       

0

0

1 0
p ie

e

k j kN j N

D j D j



 

  
   

     

 

On simplifying the above equation leads (5). 
2 2 2 2

0 0 0 0e p e p i e iD j j D k N j k j N k N k j N         
   (5) 

Substituting 2 1j    in (5), (6) is obtained. 

2 2

0 0 0

2 2

0 0 0

0

( ) 0

     

      

e p e p i e i

p i e p e i e

D j D k N j k N k N k j N

k N k N D j k N k N D

    

    
    (6)       

The closed loop characteristic equation be denoted as 

( ) s  

 
( ) 0

   s R jI
      

 

Then, equating the real and imaginary parts of ( ) s to 

zero, the equations (7) is obtained. 
2 2

0 0

0

  

  

p i e

p e i e

k N k N D

k N k N D

 

  
     (7) 

Let 
2

0

0

2

0

( ) , ( )

( ) , ( )

( ) , ( )

  

 

  

e

e

e

Q N R s N

S N U N

X D Y D

 

   

   

      (8)  

 

Then equation (7) can be written as 
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( ) ( ) ( )

( ) ( ) ( )

p i

p i

k Q k R X

k S k U Y

  

  

 

 
       (9) 

 

Using  the equations (7) to (9) 
pk  and 

ik  are obtained as  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
p

X U Y R
k

Q U R S

   

   






     (10) 

And 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
I

Y Q X S
k

Q U R S

   

   






       (11) 

The equations (10) and (11) further simplified as  
2

0 0

2 2 2

0




 

e e

e

D N N D
kp

N N




      (12) 

2 2

0 0

2 2 2

0




 

e e

e

N D N D
ki

N N

 


   (13)  

Solving the equations (12) and (13) simultaneously, the 

stability boundary locus, ( , , )p il k k  , in the ( , )p ik k plane 

can be obtained. Choosing a test point from that  region 

( pk , ik ) the stability of the third–order systems are 

verified. 

 

3.KRONECKER SUMMATION METHOD 

The stabilizing regions are also obtained using a second 

method Kronecker Summation method. The procedural 

steps for computation of the stabilizing regions using 

Kroneckecker summation method  for feedback system  

shown in Fig.(1)., are enumerated as follows.   

(i). Let the controlled plant is defined using equation (1). 

(ii). The controller is defined using (2). 

(iii). The characteristic equation of the closed loop 

system is defined in equation (14) 

1 0

( ) ( ) ( ) ( )

( , ) ... ( , ) ( , ) 0

  

    

p i

n

n p i p i p i

CE s sD s k s k N s

f k k s f k k s f k k

         (14) 

(iv). Transform equation (14) into phase variable 

companion form  (i.e. differential equation matrix form) 

1 2

2 3

0 1 1

1 2

( , ) ( , ) ( , )
...

( , ) ( , ) ( , )

p i p i n p i

n n

n p i n p i n p i

x x

x x

f k k f k k f k k
x x x x

f k k f k k f k k







    

 

which can be written as   

  X MX             (15)     

where        1 2
T

nX x x x  

(v). Obtain the system matrix "M" in phase variable 

companion form. 

0 1 2 1

0 1 0 0 0

0 0 1 0 0

0 0 1

0

0 0 0 0 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

p i p i p i n p i

n p i n p i n p i n p i

M

f k k f k k f k k f k k

f k k f k k f k k f k k



 
 
 
 
 

  
 
 
 
    
   

(vi). The relation between (14) and (15) is given as  

( ) ( , )det( ) 0n p iCE s f k k sI M               (16) 

where s is the root of  eq.(14) as well as eigenvalue of 

matrix M. M is a constant matrix, the complex 

conjugates of s also satisfies eq.(16) i.e.,  
*det( ) 0 sI M                   (17) 

(vii). The stability boundary in  ( , )p ik k  plane is defined 

using the determinant of Kronecker summation [6]. 

Define the auxiliary characteristic equation as in (18) 

 det 0ACE M M                     (18) 

(viii). After obtaining the matrix M, derive the auxiliary 

characteristic equation as mentioned above, for some 

values of ' ' , pk and ik are identified such that selected 

pair of ( , )p ik k  leads to det[ ] 0M M   as both s j  

and *s j   are the roots of characteristic equation and 

sum of the eigen values of  s j  and *  s j  is zero.  

Finally equation (18)  defines the boundary in 

( , )p ik k plane that divides this  plane into stable and 

unstable regions.  

 

4. -HURWITZ STABILITY METHOD 

Consider the plant, with rational transfer function  

P(s)= N(S)

D(S)
; 

With the PID feedback controller 

C(s) = kps+ki+kds
2
/s(1+sT), T>0   ……….(19) 

 

The closed loop characteristics polynomial is 

δ(s)=S*D(s)(1+sT)+(kps+ki+kds
2
)*N(s)  ………..(20) 

we form the new polynomial v(s) =δ(s)*N(-s)……..(21) 

note that the even odd decomposition of v(s) is of the 

form v(s)=veven(s
2
(ki, kd))+S*vodd(s

2
(kp)) the polynomial 

v(s) exhibits the parameter separation property, namely, 
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that kp appears only in the odd part and (ki, kd) only in 

the even part. By sweeping over the values of (kp, ki) 

from stable boundary locus (kp vs ki) plane space 

region. after fixing range of pK = p
*

K ,There exists sets of 

linear inequalities in terms of  ( iK , dK ) to satisfying the 

signature condition. 

 

Signature(V) = n-m+1+2Z
+
 ; 

This will facilitate the computation of the stabilizing set 

using signature concepts. 

N(s),D(s) are the numerator, denominator of polynomial 

degrees 'm', 'n' of Plant P(s) respectively. 

The closed loop system is stable if and only if, σ(v)= n-

m+2+2z …………. …………….(22) 

closed loop stability is equivalent to the requirement that 

then n+2 zeros of δ(s) lie in the open LHP .  

this is equivalent to σ(δ)=n+2 

and to  σ(v)=n+2+z
+
-z

- 

 n+2+z
+
-(m-z

+
) =(n-m)+2+2z

+ 

z
−,

 z
+   

are denote the no. of roots on the S-plane LHP, 

RHP of numerator N(s)
. 

 Sgn[ q(w(0
+
), pK  )] = j; 

j = Sgn[ oddV (0
+
 , pK ) ; ……(23) 

  n-m+1+2Z
+
 =  j(i0 + 

l 1

t 1

2
-

=

å (-1)
t
it) ,if n + m is 

odd…(24) 

 =  j(i0 + 

l 1

t 1

2
-

=

å (-1)
t
it + (-1)

l  
li ), if n + m is even ---.(25) 

Based on this, we can develop the following procedure 

to calculate S
0
: the stabilizing set S

0
:(

 p i d(s, k , k , k )d ) 

getting from 3-D graph results. 

 

4a. PROCEDURE TO DO SIGNATURE METHOD: 

consider unity feedback loop with PID  controller c(s)  

and plant P(s)    

 

P(s)= N(S)

D(S)
;    C(s)= pK + dK S+

ik

S
; 

N(s), D(s) are the numerator, denominator of polynomial 

degrees 'm', 'n' of Plant P(s) respectively. 

closed loop characteristic equation of polynomial  is  

p i d(s, k , k , k )d = (1+[P(s)*C(s)]) 

p i d(s, k , k , k )d   =  1+[ pK + dK S+
ik

S
][ N(S)

D(S)
] 

p i d(s, k , k , k )d  =  S D(s) + [ iK + dK 2s ]N(s) 

+[ pK S][N(s)]. …… (9) 

we Assume that N(s) and D(s) are co-prime, that is, they 

have no common roots and N(0) ¹ 0. 

closed loop characteristic equation of polynomial is 

δ(s, p i dk , k , k ) =S D(s) +[ pK S+ iK + dK 2s ]N(s). 

 

Assume N(s) has no roots on the imaginary axis. 

ν(s) : = δ(S, p i dk , k , k )N(−s). 

The main motto of the V(s) is the achieve a separation of 

the gains into the Real and Imaginary parts and also the 

divide into the Even and  odd parts of S. 

normally S= j w  into  the V(S) and then  divides into 

p i dk , k , k into the real and imaginary parts and also the 

Even and odd parts to be divided. If  p i d(s, k , k , k )d  is 

multiplied with the N(-s) ,then only divided properly 

even part section consists i dk , k and  odd part section 

includes pK , otherwise both are not separated. so that 

Even part of V(w) is( i dk , k   ) and  odd part is  pK
 

V(w) = P(w) + j q(w); 

V(w) = Even part + odd part (or) real part +imaginary 

part; 

For PI controller (using stability boundary locus method) 

Even part and odd parts are equal to zero, then 

V(w) = [P1(w)+KiP2(w)] + j[ q1(w)+ pK q2(w)]. 

iK = - 
P1(w)

P2(w)
;   pK = -

q1(w)

q2(w)
; ….(9) 
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For PID controller: 

V(w)= [P1(w)+ { i dk k- 2w }P2(w) ]+ j {q1(w)+ 

pk q2(w)} ; ….(10) 

In v(s), Pk  only appears in the odd degree terms of S, 

while ik and dk only appears in the even degree terms 

of S. Now equate the odd degree of or imaginary part of 

S is equal to zero and odd part of Pk terms equal to zero 

and then by using the  (i) R-H criteria, Basically we use 

Routh-Hurwitz criterion which will be very difficult due 

to formation of inequalities. Therefore to simplify the 

process we use a revolutionary method known as 

Signature Method. 

 (ii) stability boundary locus method or above PI 

controller technique ,To find out the range of pk . 

for  fixed range of  pk = 
*
pK
 

There exists sets of linear inequalities in terms of  

( i dk , k ) to satisfying the signature condition. 

Signature(V) = n-m+1+2Z
+
 ; 

z
−
, z

+   
are denote the no. of roots on the S-plane LHP, 

RHP of numerator N(s)
. 

 

The range of pK such that q(w) is the odd part of V(w) 

and roots of q(w) consider only real and positive 

roots(w0,w1,w2,w3..),distinct, finite zeros with odd 

multiplicity was determined by Kp range. 

sgn[ q(w(0
+
), pK  )] = j; 

j = sgn[ oddV (0
+
 , pK ) ]; 

I1 = {i0, i1, i2, i3....}; I2= {i0, i1, i2, i3....}; I3 = {i0, i1, i2, 

i3....}. 

I1,I2, I3 ......are the admissible string sets and must 

satisfies the signature of V. 

σ(v)-signature (ν)= n +1− m +2z
+
. 

n-m+1+2Z
+
 =  j(i0 + 

l 1

t 1

2
-

=

å (-1)
t
it) ,if n + m is odd, 

=  j(i0 + 

l 1

t 1

2
-

=

å (-1)
t
it + (-1)

l  
li ), if n + m is even .by 

sweeping over pK values into the fixed range and then 

string sets follows that the stabilizing  ( i dk , k )  must 

satisfies the string of inequalities: 

p1(w0) +( i dk k-
2

0w )P2(w0) < 0 

p1(w1) +( i dk k-
2

1w )P2(w1) > 0 

p1(w2) +( i dk k-
2

2w )P2(w2) > 0 

Substituting for w0,w1,w2,w3 in the above expressions, 

we obtain set of values of ( i dk , k ) form of equations 

solved by linear programming and denoted by sets  

S1,S2,S3,S4,S5….SX. by sweeping over different pK  

values within  the interval and repeating  above 

procedure at each stage, we can generate the set of 

stabilizing ( p i dk , k , k ) values. 

 

To show the effectiveness of these stabilizing PI 

controller design methods third-order systems are 

considered for simulation in MATLAB. 

 

Example 1: 

Case (a) : Boundary locus method: 

Consider the third-order system [2] described using a 

transfer function 
1( )G s . The stabilizing PI controller 

parameters are obtained using Boundary Locus method 

the detailed step-by step computation procedure is given 

as below. 

1 3 3

2.925
( )

175.5 137.5 22 1


  
G s

s s  
Substituting s j

 

1 2 2

2.925
( )

( 137.5 1) ( 175.5 22)


    
G j

j


  
 

Dividing the numerator and denominator into even and 

odd parts, and represented using  
01 1 01 1, , , .e eN N D D  

01 1

2 2

01 1

0 , 2.925

22 175.5 , 137.5 1

 

    

e

e

N N

D D 

 

1pK  and 
1iK  are obtained using equations (12) and (13)   
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2

1 47 0.341 pk 
2 4

1 7.521 60 ik  
 

1pK  and 
1iK  both are functions of  ,and by choosing a 

suitable range of   the 
pk  and 

ik  values are plotted and 

the stabilizing PI controller region is shown in Fig.(2). 

-1 0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Kp1

K
i1

Stabilizing PI controller region using Boundary Locus method 

 
Fig.(2). Stabilizing PI controller region for 

1( )G s  using 

Boundary Locus method. 

 

Case (b) : Kronecker Summation method: 

The detailed step-by step computation procedure for  

stabilizing PI controller parameters using Kronecker 

summation method is given as below. The characteristic 

equation of the system whose block diagram is shown in 

Fig.(1) is  
11 ( ) ( ) 0 G s C s . Substituting the 

1( )G s and 

( )C s in the equation results, 

3 3

2.925
1 0

175.5 137.5 22 1

p ik s k

ss s

  
   

      
 

On simplification  
4 3 2175.5 137.5 22 (2.925 1) 2.925 0p is s s k s k     

 
Comparing the above equation with standarded equation 

the coefficients are obtained and listed below. 

0 1

2 3 4

2.925 , 2.925 1

22 , 137.5 , 175.5

i pf k f k

f f f

  

  

 

find  M M here , 

By substituting the above values the value of M is 

obtained. 

31 2

4 4 4 4

0 1 0 0

0 0 1 0

0 0 0 1

o

M

f ff f

f f f f

 
 
 
 
 
   
  

 
0 1 0 0

0 0 1 0

0 0 0 1

0.0166 0.0166 0.005 0.125 0.783

 
 
 
 
 
      i p

M

k k

 
Apply the Kronecker Summation operation and plot the 

locus .The stabilizing PI region for the 
1( )G s is shown in 

Fig.(3). 

-2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25
Stabilizing PI Controller Region using Kronecker Summation method

Kp1

K
i1

 
Fig.(3). Stabilizing PI controller region for 

1( )G s using 

Kronecker Summation method. 

 

The third-order system should be stable for any arbitrary 

,( )p ik k point inside the boundary region and should be 

unstable outside the region. For verifying this fact an 

arbitrary test point is considered inside and also outside 

the region and simulation is performed. The time-

response of the third-order system with a test point 

,( )p ik k =(1,0.05) which is in the region is simulated with 

step disturbance of magnitude 0.2 performed at100 

seconds and shown in Fig.(4). 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time in seconds

A
m

pl
itu

de

Time response of G1(s) for tet point inside the region.

 
Fig.(4). Time response of 

1( )G s with test point inside the 

region. 
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Let us consider a test point ,( )p ik k =(7,0.2) which is 

outside the region, the time response is shown in Fig.(5). 

0 50 100 150 200 250 300
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Fig.(5). Time response of 

1( )G s with test point outside 

the region. 

 

Example 2: 

Case (a): Boundary locus method: 

Consider the third-order system [5] described using a 

transfer function 
2 ( )G s . The stabilizing PI controller 

parameters are obtained using Boundary Locus method 

the detailed step-by step computation procedure is given 

as below. 

2 3 2

5
( )

2 3 4
G s

s s s


    
substituting  s j

 

2 2 2

5
( )

(4 2 ) (3 )
G j

j


  


  
 

 

Dividing the numerator and denominator into even and 

odd parts, and represented using  
01 1 01 1, , , .e eN N D D  

02 2

2 2

02 2

0, 5

3 , 4 2

e

e

N N

D D 

 

   

 

2pK  and 
2iK  are obtained using equations (12) and (13)   

2

2 0.4 0.8pk   2 4

2 0.6 0.2ik   
 

2pK  and 
2iK  both are functions of  ,and by choosing a 

suitable range of   the kp and ki values are plotted and 

the stabilizing PI controller region is shown in Fig.(6). 
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Stabilizing PI controller region using Boundary locus region.

 
Fig.(6). Stabilizing PI controller region for 

2 ( )G s  using 

Boundary Locus method. 

 

Case (b) : Kronecker Summation method: 

The detailed step-by step computation procedure for  

stabilizing PI controller parameters using Kronecker 

summation method is given as below. The characteristic 

equation of the system whose block diagram is shown in 

Fig.(1) is  
21 ( ) ( ) 0G s C s  . Substituting the 

2 ( )G s and 

( )C s in the equation results, 

3 2

5
1 0

2 3 4

p ik s k

ss s s

  
   

      
On simplification 

4 3 22 3 (5 4) 5 0p is s s k s k     
 

Comparing the above equation with standarded equation 

the coefficients are obtained and listed below. 

0 1 2

3 4

5 , 5 4, 3

2, 1

i pf k f k f

f f

   

 

 

find  M M here , 

 

By substituting the above values the value of M is 

obtained. 

31 2

4 4 4 4

0 1 0 0

0 0 1 0

0 0 0 1

o

M

f ff f

f f f f

 
 
 
 
 
   
  

 
0 1 0 0

0 0 1 0

0 0 0 1

5 5 4 3 2i p

M

k k

 
 
 
 
 
      
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Apply the Kronecker Summation operation and plot the 

locus .The stabilizing PI region for the 
2 ( )G s is shown in 

Fig.(7). 
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Fig.(7). Stabilizing PI controller region for 

2 ( )G s using 

Kronecker Summation method. 

 

The third-order system should be stable for any arbitrary 

,( )p ik k point inside the boundary region and should be 

unstable outside the region. For verifying this fact an 

arbitrary test point is considered inside and also outside 

the region and simulation is performed. The time-

response of the third-order system with a test point 

,( )p ik k =(0,0.1) which is in the region is simulated with 

step disturbance of magnitude 0.2 performed at100 

seconds and shown in Fig.(8). 
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Fig.(8). Time response of 

2 ( )G s  with test point inside the 

region. 

 

Let us consider a test point ,( )p ik k =(0,0.6) which is 

outside the region, the time response is shown in Fig.(9). 
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Fig.(9). Time response of 

2 ( )G s with test point outside 

the region. 

 

(1).Example for Signature Method 

Design the problem of determining stabilizing set of PID 

gains for the plant  P(s)= N(S)

D(S)
; 

where N(s) = s
3
-2s

2
-s-1 ;D(s) = s

6
+2s

5
+32s

4
+26s

3
+65s

2
-

8s+1 

We use the PID controller with T=0. The closed loop 

characteristic polynomial is 

δ (s, kp, ki, kd) = s*D(s)+(ki+kds
2
) N(s)+KP*S*N(s) 

Here n=6 and m=3 

Neven(S
2
) = -2S

2
 -1, Nodd(S

2
) = S

2 -
1, 

Deven(S
2
) =S

6
 + 32S

4
+65S

2 
+1,DOdd(S

2
) = 2S

4
+ 26S

2
– 8 

N(-s) = (-2s
2
-1)-s(s

2
-1) 

 

Therefore, we obtain 

V(S) = δ (s, kp, kI, kd) N(-s) 

= {S
2
(-S

8
 - 35S

6
-87S

4
+54S

2
+9) +(ki+kds

2
) (-S

6
+ 

6S
4
+3S

2
+1)} 

+S*[(-4S
8
- 89S

6
- 128S

4
 - 75S

2
 -1) +kp*(-S

6
 + 6S

4
 +3S

2
 +1)] 

 

So that 

V (jω, kp, ki, kd) = [p1(w)+(ki-kdω
2
) p2(ω)] 

+j[q1(ω)+kpq2(ω)]; 

 

To get the results, we need to separate the even and odd 

parts equal to zero 
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For PI CONTROLLER iK = -
P1(w)

P2(w)
; pK = -

q1(w)

q2(w)
; 

For PID CONTROLLER: 

V(w)= [P1(w)+ { iK - dK 2w }P2(w) ]+ j {q1(w)+ pK  

q2(w)} ; 

Where 

P1(w) = w
10

 – 35w
8
 +87 w

6
 +54 w

4
 -9w

2 

P2(w) = w
6
+6w

4
-3w

2
+1 

q1(w) = -4w
9
+89w

7
-128w

5
+75w

3
-w 

q2(w) = w
7
+ 6w

5
 – 3w

3
 +w 

 

We find that z
+
 = 1 so that the signature requirement on 

v(s) for stability is, σ(v) = n-m+1+2z
+
= 6 Since the 

degree of v(s) is even, we see from the signature 

formulas that q(ω) must have at least two positive real 

roots of odd multiplicity  The range of kp such that q (ω, 

kp) has at least 2 real, positive, distinct, finite zeros with 

odd multiplicities was determined to be (-24.7513, 1) 

which is the allowable range of kp. For a fixed kpϵ (-

24.7513,1), for instance kp= -18, we have 

q (ω, -18) = q1(ω)-18q2(ω) 

=-4ω
9
+71ω

7
-236ω

5
+129ω

3
-19ω 

 

Then the real, nonnegative, distinct finite zeros of q (ω, -

18) with odd multiplicities are 

ω0=o, ω1=0.5195, ω2=0.6055, ω3=1.8804,ω4=3.6648 

 

Also define ω5=∞.since 

Sgn [q (0, -18)] = -1 

It follows admissible string I= {i0,i1,i2,i3,i4,i5}   Must 

satisfy 

{i0-2i1+2i2-2i3+2i4-i5}.(-1) =6 

Hence the admissible strings are 

I1= {-1, -1, -1, 1, -1, 1}; 

I2= {-1, 1, 1, 1, -1, 1}; 

I3= {-1, 1, -1, -1, -1, 1}; 

I4= {-1, 1, -1, 1, 1, 1} 

I5= {1, 1, -1, 1, -1, -1}; 

 

For I1 it follows that stabilizing set () values 

corresponding to kp=-18 in fig(10,11) 

stabilizing set of (kd,ki)

ki

kd

-40 -30 -20 -10 0 10

-40

-30

-20

-10

0

10

 
fig(10) 2-D view of stabilizing set  of  Ki vs Kd 

 
fig(11) fixed Kp value for varying set of (Ki,Kd) 

 

Must satisfy string ki, kd of inequalities 

P1(ω0) + (ki-kdω0
2
) p2(ω0) <0 

P1(ω1) + (ki-kdω1
2
) p2(ω0) <0  

P1(ω2) + (ki-kdω2
2
) p2(ω0) <0   

P1(ω3) + (ki-kdω3
2
) p2(ω0)>0 

P1(ω4) + (ki-kdω4
2
) p2(ω0) <0 

P1(ω5) + (ki-kdω5
2
) p2(ω0)>0   

 
fig(12) 3-D View of stabilizing set 
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Substituting forω0, ω1, ω2, ω3, ω4 and ω5 in the above 

expressions, we obtain 

ki<0 

ki-0.2699kd<-4.6836 

ki-0.3666kd<-10.0797 

ki-3.5358kd>3.912 

ki-13.5777kd<140.2055 

the set values of (ki, kd) for which the above equations 

hold can be solved by linear programming observed in 

fig(12) and is denoted by S1.for I2, we have 

ki<0 

ki-0.2699kd<-4.6836 

ki-0.3666kd<-10.0797 

ki-3.5358kd>3.912 

ki-13.5777kd<140.2055 

 

The set values of (ki, kd) for which the above equations 

hold can be solved by linear programming and is 

denoted by S2. similarly, we obtain 

S3 = ⱷ for I3 

S4 = ⱷ for I4 

S5 = ⱷ for I5 

 

Then the stabilizing set of (ki, kd) values when kp=-18 is 

given byS (-18) = Ụx =1, 2…3…sx 

= s1Ụ s2   

From the intersections of plots in space that’s 3-

dimensional plot fig(12) in which we can select vertex of 

stabilizing set (Kp, Ki, Kd) values which satisfies the 

stabilizing criterion. 

 

5.CONCLUSION 

This paper deals with the three approaches for 

computation of stability regions for PI controllers. 

Stabilizing PI controller parameters are obtained using 

Boundary locus method, Kronecker Summation method, 

signature method.. It is observed that both methods are 

giving identical stabilizing regions.Third order systems 

are considered for simulation in matlab. Examples are 

given clearly to find out stability region . 

 

This paper also dealt with an approach has been 

presented for computation of stabilization of PI,PID 

controllers using boundary locus and stabilization set of 

PID gains of  (Kp ,Ki, Kd), which can be easily  obtained 

by equating the real and imaginary parts of characteristic 

equation to zero. The proposed method has further has 

been used find stabilizing region of PI parameters plant 

with uncertain parameters and this signature method 

involves require sweeping over parameters. Also, it 

needs linear programming to solve set of inequalities 

used in the signature method for the further solving of 

region of stabilizing set of PID controller gains in 

effective method of approach for higher order systems. 
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